XPA A23G polymorphism and risk of digestive system cancers: a meta-analysis
نویسندگان
چکیده
BACKGROUND Several studies have reported an association between the A23G polymorphism (rs 1800975) in the xeroderma pigmentosum group A (XPA) gene and risk of digestive system cancers. However, the results are inconsistent. In this study, we performed a meta-analysis to assess the association between XPA A23G polymorphism and the risk of digestive system cancers. METHODS Relevant studies were identified using the PubMed, Web of Science, China National Knowledge Infrastructure, WanFang, and VIP databases up to August 30, 2014. The pooled odds ratio (OR) with a 95% confidence interval (CI) was calculated using the fixed or random effects model. RESULTS A total of 18 case-control studies from 16 publications with 4,170 patients and 6,929 controls were included. Overall, no significant association was found between XPA A23G polymorphism and the risk of digestive system cancers (dominant model: GA + AA versus GG, OR 0.89, 95% CI 0.74-1.08; recessive model: AA versus GA + GG, OR 0.94, 95% CI 0.74-1.20; GA versus GG, OR 0.89, 95% CI 0.77-1.03; and AA versus GG, OR 0.87, 95% CI 0.64-1.19). When the analysis was stratified by ethnicity, similar results were observed among Asians and Caucasians in all genetic models. In stratified analysis based on tumor type, we also failed to detect any association between XPA A23G polymorphism and the risk of esophageal, gastric, or colorectal cancers. CONCLUSION This meta-analysis indicates that the XPA A23G polymorphism is not associated with a risk of digestive system cancers.
منابع مشابه
Pterygium and genetic polymorphisms of the DNA repair enzymes XRCC1, XPA, and XPD
PURPOSE Pterygium is an ultraviolet (UV) related disease. UV radiation can produce DNA damage, which is repaired by the DNA repair systems. Among the DNA repair systems, the base excision repair (BER) and nucleotide excision repair (NER) systems are the major ones involved in repairing UV-induced DNA damage; X-ray repair cross complementary 1 (XRCC1) and human 8-oxoguanine DNA glycosylase 1 (hO...
متن کاملXPA, haplotypes, and risk of basal and squamous cell carcinoma.
Nucleotide excision repair (NER) is instrumental in removing DNA lesions caused by ultraviolet (UV) radiation, the dominant risk factor for keratinocyte carcinoma, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). We evaluated whether BCC or SCC risk was influenced by the A23G single nucleotide polymorphism (SNP) in Xeroderma pigmentosum group A (XPA), which codes for an e...
متن کاملPolymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer.
Polymorphisms in DNA repair genes may be associated with differences in the repair capacity of DNA damage and may influence an individual's susceptibility to smoking-related cancer. We investigated the association between two polymorphisms of the DNA repair gene XPA and risk of lung cancer in the Korean population. Two XPA polymorphisms (A23G and G709A) were typed in 265 lung cancer patients an...
متن کاملSerine/threonine kinase 15 gene polymorphism and risk of digestive system cancers: A meta-analysis
Previous studies have reported an association between the two coding polymorphisms (91T>A and 169G>A) of the serine/threonine kinase 15 (STK15) gene and the risk of digestive system cancers; however, the results are inconsistent. In the present study, a meta-analysis was carried out to assess the association between the two STK15 polymorphisms and the risk of digestive system cancers. Relevant ...
متن کاملXPA A23G polymorphism is associated with the elevated response to platinum-based chemotherapy in advanced non-small cell lung cancer.
DNA repair capacity (DRC) is correlated with sensitivity of cancer cells toward platinum-based chemotherapy. We hypothesize that genetic polymorphisms in DNA repair gene XPA (xeroderma pigmentosum group A) and XPG (xeroderma pigmentosum group G) (ERCC5, excision repair cross-complementation group 5), which result in inter-individual differences in DNA repair efficiency, may predict clinical res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015